TT

CMR: 
\(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}>1,99\)

TT
29 tháng 7 2016 lúc 10:40

help me :<<

Bình luận (0)
ML
29 tháng 7 2016 lúc 12:11

\(VT=2.\left(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{\sqrt{100.100}}\right)\)

\(=2\left(\frac{1}{\sqrt{1.199}}+...+\frac{1}{\sqrt{n\left(200-n\right)}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{100}\right)\)\(\left(1\le n\le99\right)\)

Ta chứng minh \(\sqrt{n\left(200-n\right)}\le100\text{ }\left(\text{*}\right)\)

\(\left(\text{*}\right)\Leftrightarrow200n-n^2\le100^2\Leftrightarrow n^2-2.100n+100^2\ge0\)

\(\Leftrightarrow\left(100-n\right)^2\ge0\)

Do bất đẳng thức cuối đúng nên (*) là đúng, do đó ta có: 

\(A\ge2\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\text{ }\left(\text{100 số }\frac{1}{100}\right)\)

\(=2>1,99\)

Bình luận (0)

Các câu hỏi tương tự
HC
Xem chi tiết
KL
Xem chi tiết
PK
Xem chi tiết
HP
Xem chi tiết
VA
Xem chi tiết
H24
Xem chi tiết
OO
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết