Violympic toán 9

DT

CMR: \(\dfrac{1}{a^2+bc}\) +\(\dfrac{1}{b^2+ac}\) +\(\dfrac{1}{c^2+ab}\)< \(\dfrac{a+b+c}{2abc}\)

MS
28 tháng 7 2018 lúc 16:40

Đề đúng đây nhé

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Áp dụng BĐT Cosi ta có:

\(a^2+bc\ge2a\sqrt{bc}\)

\(\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2a\sqrt{bc}}\)

Cmtt: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{2b\sqrt{ac}}\)

\(\dfrac{1}{c^2+ab}\le\dfrac{1}{2c\sqrt{ab}}\)

Cộng vế theo vế ta được

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\) (C/m sau)

Nên \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

Chứng minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\text{​​}\Leftrightarrow\text{​​}\text{​​}2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\le2a+2b+2c\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\left(lđ\right)\)

Bình luận (0)
MS
28 tháng 7 2018 lúc 16:30

hình như sai đề bạn nhé. Đề vậy mk bó tay

Bình luận (2)

Các câu hỏi tương tự
TZ
Xem chi tiết
BB
Xem chi tiết
US
Xem chi tiết
MA
Xem chi tiết
LV
Xem chi tiết
NN
Xem chi tiết
NC
Xem chi tiết
LV
Xem chi tiết
LL
Xem chi tiết