Violympic toán 9

NN

chứng minh BĐT

\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{9}{2}\)

MS
3 tháng 2 2018 lúc 13:23

Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:

\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)

Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Bình luận (5)
AH
4 tháng 2 2018 lúc 14:14

Lời giải:

Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)

Có:

\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)

\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)

\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)

\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)

\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)

Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)

Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)

Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)

Ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

Bình luận (2)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
AP
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết