GC

CMR:  đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức  \(x^2+y^2\)

NT
28 tháng 5 2015 lúc 21:25

15 phút nữa đưa ra lời giải rồi đợi mọi người bấm à

Bình luận (0)
GC
28 tháng 5 2015 lúc 21:36

\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)

Bình luận (0)
NT
28 tháng 5 2015 lúc 21:46

Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2.\)

\(\Leftrightarrow\left(x+y\right)^6=\left(x+y\right)^2.\left(x+y\right)^2.\left(x+y\right)^2\) .

\(\Leftrightarrow\left(x+y\right)^6=x^6+8x^3y^3+y^6\) .

\(\Leftrightarrow\left(x-y\right)^6=x^6-8x^3y^3+y^6\).

\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=\left(x^6+x^6\right)+\left(8x^3y^3-8x^3y^3\right)+\left(x^6+x^6\right)\).

\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=2.x^6+2.y^6=2\left(x^6+y^6\right)=2.\left(\left(x^2+y^2\right).\left(x^2+y^2\right):2\right).\)

 

 

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
PT
Xem chi tiết
UN
Xem chi tiết
LT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
VT
Xem chi tiết
NK
Xem chi tiết