15 phút nữa đưa ra lời giải rồi đợi mọi người bấm à
\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)
Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(\Leftrightarrow\left(x+y\right)^6=\left(x+y\right)^2.\left(x+y\right)^2.\left(x+y\right)^2\) .
\(\Leftrightarrow\left(x+y\right)^6=x^6+8x^3y^3+y^6\) .
\(\Leftrightarrow\left(x-y\right)^6=x^6-8x^3y^3+y^6\).
\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=\left(x^6+x^6\right)+\left(8x^3y^3-8x^3y^3\right)+\left(x^6+x^6\right)\).
\(\Leftrightarrow\left(x+y\right)^6+\left(x-y\right)^6=2.x^6+2.y^6=2\left(x^6+y^6\right)=2.\left(\left(x^2+y^2\right).\left(x^2+y^2\right):2\right).\)