a) Đặt 2 số đấy là 2k+1 và 2k+3 và UWCLN của chúng là d . Ta có :
2k+1 chia hết cho d ; 2k+3 chia hết cho d => 2k+3 -(2k+1) chia hết cho d hay 2 chia hết cho d
d ko thể bằng 2 vì d là ước của 2 số lẻ => d=1 => 2 số lẻ liên tiếp nguyên tố cùng nhau .
b) Gọi ƯCLN của 2n+5 và 3n+7n là d . Ta có
2n+5 chia hết cho d => 6n+10 chia hết cho d
3n+7 chia hết cho d => 6n+ 14 chia hết cho d
=> 6n+14 -(6n+10) chia hết cho d hay 4 chia hết cho d mà d ko thể bằng 2 hay 4 vì d là ước của 2n+5 ( số lẻ ) => d=1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau .