KP

 CMR 

Các phương trình sau vô nghiệm

\(x^4-x^3+2x^2-x+1=0\)

NP
5 tháng 7 2019 lúc 21:47

Ta có:\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)

Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(x^2+1\ge1\)

nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)

Vậy Pt trên vô nghiệm

Bình luận (0)

\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)

\(\Leftrightarrow x^2=-1\)( vô lý )

Do đó : Phương trình đã cho vô nghiệm

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
TD
Xem chi tiết
LT
Xem chi tiết
8N
Xem chi tiết
DH
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết