Ta có:\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)
Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
và\(x^2+1\ge1\)
nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)
Vậy Pt trên vô nghiệm
\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)
\(\Leftrightarrow x^2=-1\)( vô lý )
Do đó : Phương trình đã cho vô nghiệm