cho a/x=b/y=c/z.
Cmr a+2b-3c/4a-5b+6c=x+2y-3z/4x-5y=6z
cho: a/x=b/y=c/z
chứng minh rằng a/x=b/y=c/z=a+2b-3c/x+2y-3z
Cho: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(CMR:\)\(\frac{a+2b-3c}{4a-5b+6c}=\frac{x+2y-3z}{4x-5y+6z}\)
cho a;b;c;x;y;z khác 0 thỏa mãn:
\(\frac{x^2-6xy}{a}=\frac{4y^2-3xz}{2b}=\frac{9z^2-2xy}{3c}\)
CMR:
\(\frac{a^2-6bc}{x}=\frac{4b^2-3ac}{2y}=\frac{9c^2-2ab}{3z}\)
cho a;b;c;x;y;z khác 0 thỏa mãn:
\(\frac{x^2-6xy}{a}=\frac{4y^2-3xz}{2b}=\frac{9z^2-2xy}{3c}\)
CMR:
\(\frac{a^2-6bc}{x}=\frac{4b^2-3ac}{2y}=\frac{9c^2-2ab}{3z}\)
Cho x+y+z = 2.(a+b+c)
và \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Tính \(P=\frac{x+2y+3z}{a+2b+3c}\)
Lm hộ xíu ~.~
Cho a, b, c, x, y, z khác 0 thỏa mãn (x/a-2b+z)=(y/2a-b -c)=(z/4a+4b+c). CMR (a/x+2y+z)=(b/z-y-2x)=(c/4x-4y+z)
\(Cho:\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c};trongđó:a,b,c,2b+2c-a,2c+2a-b,2a+2b-c\ne0.cmr:\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
1,cho\(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)
CMR:\(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)