\(A=n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\)là tích hai số tự nhiên liên tiếp nên \(n\left(n+1\right)\)có các chữ số cuối là : 0;2;6
Do đó \(n\left(n+1\right)+1\)có các chữ số cuối là 1;3;7
Vì thế \(n\left(n+1\right)+1\)không chia hết cho 2;5 với mọi số n
Hay \(n^2+n+1\)không chia hết cho2;5 vs mọi số n
Vậy A không chia hết cho 2;5 với mọi số n
Ta có : n2+n+1 (dấu . là dấu nhân)
=n.n+n.1+1
=n.(n+1)+1
Do n.(n+1) chia hết cho2
Dựa vào một số chia hết cho 2 và 5 có tận cùng =0 (số chẵn )
=>n.(n+1)+1 ( số lẻ ) không chia hết cho 2 và 5 với mọi n thuộc N
thanks you everybody so very much