BB

CMR: \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}<1\frac{3}{4}\)

NH
1 tháng 4 2016 lúc 21:11

ta có \(\frac{1}{1^2}<\frac{1}{1.2},\frac{1}{2^2}<\frac{1}{2.3},.........,\frac{1}{100^2}<\frac{1}{100.101}\)

=> A <\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{100.101}\)

dến đây bạn tự tính nha mình tính đc bằng 

A < \(\frac{1}{1}-\frac{1}{101}\)

bây giờ tự lập luận là đc , đơn giản mà 

kết bạn vs mình cũng đc , có bài nào thì mình bày  cho

Bình luận (0)

Các câu hỏi tương tự
CB
Xem chi tiết
HA
Xem chi tiết
NB
Xem chi tiết
TH
Xem chi tiết
NB
Xem chi tiết
GM
Xem chi tiết
DN
Xem chi tiết
CL
Xem chi tiết
BQ
Xem chi tiết