MT

CMR: a5b-b5a chia hết cho 30 với mọi a,b thuộc Z.

AH
25 tháng 10 2024 lúc 23:11

Lời giải:

$A=a^5b-ab^5=ab(a^4-b^4)=ab(a^2-b^2)(a^2+b^2)$

Nếu $a,b$ khác tính chẵn lẻ thì hiển nhiên 1 trong 2 số là số chẵn, 

$\Rightarrow ab\vdots 2\Rightarrow A\vdots 2$

Nếu $a,b$ cùng tính chẵn lẻ thì $a^2-b^2\vdots 2$

$\Rightarrow A\vdots 2$

Vậy tóm lại $A\vdots 2(1)$

Lại có:
Nếu ít nhất 1 trong 2 số $a,b$ chia hết cho 3 thì hiển nhiên $A\vdots 3$.

Nếu cả 2 số $a,b$ đều không chia hết cho 3. Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2,b^2$ chia 3 dư 1.

$\Rightarrow a^2-b^2\equiv 1-1\equiv 0\pmod 3$
$\Rightarrow A\vdots 3$

Vậy $A\vdots 3(2)$

Xét tính chia hết cho 5

Nếu 1 trong 2 số $a,b$ chia hết cho 5 thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho 5. 

Ta biết 1 scp khi chia 5 dư 0,1,4. Vì $a,b$ không chia hết cho 5 nên $a^2,b^2$ chia 5 dư 1 hoặc 4.

TH $a^2,b^2$ cùng dư 1 hoặc cùng dư 4 khi chia 5 thì $a^2-b^2\vdots 5\Rightarrow A\vdots 5$

TH $a^2,b^2$ khác dư, tức là 1 số chia 5 dư 1 còn 1 số chia 5 dư 4

$\Rightarrow a^2+b^2\equiv 1+4\equiv 5\equiv 0\pmod 5$

$\Rightarrow A\vdots 5$

Vậy tóm lại $A\vdots 5(3)$

Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
LH
Xem chi tiết
NV
Xem chi tiết