§1. Bất đẳng thức

H24

CMR: a^4+b^4+c^4>=abc(a+b+c)

DN
15 tháng 1 2017 lúc 21:13

a^4 + b^4 >= 2a^2b^2
b^4 + c^4 >= 2b^2c^2
a^4 + c^4 >= 2a^2c^2
--------------------------------------...
Cộng vế theo vế ta có:
=> 2a^4 + 2b^4 + 2c^4 >= 2(a^2b^2 + b^2c^2 + a^2c^2)
<=> a^4 + b^4 + c^4 >= a^2b^2 + b^2c^2 + a^2c^2 (1)
Áp dụng Cauchy lần nữa ta có:
a^2b^2 + b^2c^2 = b^2 (a^2 +c^2) >= b^2(2ac)
b^2c^2 + a^2c^2 = c^2 (b^2 + a^2) >= c^2(2ba)
a^2b^2 + a^2c^2 = a^2 (b^2 + c^2) >= a^2(2bc)
--------------------------------------...
Cộng vế theo vế ta có
=> 2(a^2b^2 + b^2c^2 + a^2c^2) >= 2[b^2(ac) + c^2(ba) + a^2(bc)]
<=> a^2b^2 + b^2c^2 + a^2c^2 >= b^2(ac) + c^2(ba) + a^2(bc)
<=> ......................................>= abc ( b + c + a) (2)
từ (1) và (2) ta có điều fài chứng minh.

Bình luận (0)
H24
13 tháng 3 2022 lúc 22:26

Ta có : a^2b^2+b^2c^2+a^2c^2>=abc(a+b+c)

<=> 2a^2b^2+2b^2c^2+2a^2c^2>=2abc(a+b+c)

<=> 2a^2b^2+2b^2c^2+2a^2c^ -2abc(a+b+c)>=0

<=>(a^2b^2-2ab^2c+b^2c^2)+(b^2c^2-2abc^2+a^2c^2)+(a^2c^2-2a^bc+a^2b^2)>=0

<=>(ab-bc)^2+(bc-ac)^2+(ac-ab)^2>=0 là đúng

Ta có a^4+b^4+c^4>=a^2b^2+b^2c^2+a^2c^2

Theo t/c bắc cầu

=>a^4+b^4+c^4>=abc(a+b+c)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
PT
Xem chi tiết
PL
Xem chi tiết
TY
Xem chi tiết
ON
Xem chi tiết
CC
Xem chi tiết