Ta có: 35=1(mod 17)
=>3535=135(mod 17)
=>3535=1 (mod 17)
Ta có: 52=1(mod 17)
=>5252 = 152(mod 17)
=>5252=1(mod 17)
=>3535+5252-2=1+1-2 (mod 17)
=>A=0 (mod 17)
=>A chia hết cho 17 (đpcm)
Ta có: 35=1(mod 17)
=>3535=135(mod 17)
=>3535=1 (mod 17)
Ta có: 52=1(mod 17)
=>5252 = 152(mod 17)
=>5252=1(mod 17)
=>3535+5252-2=1+1-2 (mod 17)
=>A=0 (mod 17)
=>A chia hết cho 17 (đpcm)
CMR: 22^6n+2+3 chia hết cho 19(2 mũ 2 mũ 6n+2). Giải theo cách đồng dư thức
CMR: 22^6n+2+3 chia hết cho 19(2 mũ 2 mũ 6n+2). Giải theo cách đồng dư thức nhé!:)))))
CMR: P=34n+1+2 chia hết cho 5
( chú ý làm theo phương pháp đồng dư thức nhé!)
CMR : a, 270 + 370 chia hết cho 13
b, 3105 + 4105 chia hết cho 181
( làm bằng đồng dư thức nha các bạn )
CMR: 19n-18n7-1 chia hết cho 72
Dùng đồng dư thức nha
2. CMR: 7.52n+12.6n chia hết cho 19
*Sử dụng đồng dư thức
A=2^3+2^4+2^5+...+2^100. tìm dư khi chia A cho 2012 (giải theo đồng dư thức nha)
bài 1 CMR:
a,(1991^1997-1997^1996) chia hết cho 10
b,(2^9+2^99) chia hết cho 100
bài 2 CMR
a,nếu a đồng dư1(mod2)thì a^2 đồng dư 1(mod8)
b, nếu a đồng dư 1(mod3) thì a^3 đồng dư 1(mod9)
Tìm dư trong phép chia a) 22017 cho 13
b) 20172017 cho 13
Theo cách đồng dư nha