Cho x, y , z khác 0. Cmr nếu a=x2-yz, b=y2-xz , c=z2-xy thì (ax+by+cz) chia hết cho (a+b+c)
help em gấp ạ
Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
Cho biết x, y, z khác 0 và\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2.\)
Cmr : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}.\)
Cho a=x2 - yz; b= y2 - zx: c= z2 - xy.
a) Tính tổng ax+by+ cz và tổng a+b+c
b) CMR ax+by+ cz=(x +y + z)(a+b+c)
Cho a=x2 - yz; b= y2 - zx: c= z2 - xy.
a) Tính tổng ax+by+ cz và tổng a+b+c
b) CMR ax+by+ cz=(x +y + z)(a+b+c
3. Chứng minh rằng nếu: thì
(x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
Cho x , y , z khác 0 , x + y + z khác 0 thỏa mãn x = by + cz , y = ax + cz , z = ax + by
Tính giá trị của biểu thức : A =\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
Chứng mình rằng nếu \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)\)
Với x, y, z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CMR nếu (\(a^2\)+\(b^2\) + \(c^2\) ).(\(x^2+z^2+y^2\)) = ( ax + by + cz) \(^{^2}\)
Với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)