PT
Cmr; a^2+ b^2+ 1-ab-a-b _> 0

        2 Cho các số a,b tmđk a+b>-1. Cmr: a^3+b^3+1-3ab_> 0

DT
25 tháng 3 2019 lúc 19:22

1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)

Dấu '=' xảy ra khi \(a=b=1\)

Bình luận (0)
H24
26 tháng 3 2019 lúc 8:47

2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)

Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)

Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)