Hình như là c/minh 1 < A2 < 4 mà
Hình như là c/minh 1 < A2 < 4 mà
SO SÁNH A và B : A=2016/(1*2)+2016/(3*4)+2016/(5*6)+......+2016/(1999*2000) và B=2017/1001+2017/1002+2017/1003+......+2017/2000
2014/1001+2014/1002+2014/1003+.....+2014/2000
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Cho A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+\)....... \(+\frac{1001}{1000^2+1000}\) .
CMR : \(1< A^2< 4\)
tính nhanh
12+14+.....+1002
15+16+...+1001
Chứng minh rằng \(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}<\frac{3}{4}\)
B=2011/1001 +2011/1002 +...+2011/2000
Cho A= 1001/1000^2+1 + 1001/1000^2+2 + .... + 1001/1000^2+1000.
Chứng minh rằng: 1 < A^2 < 4