CMR
a, n(n + 1) (2n + 1) \(⋮\)6
b, n5 - 5n3 + 4n \(⋮\)120 \(\forall\)n \(\in\)N
c, n4 + 6n3 + 11n2 + 6n \(⋮\)24 \(\forall\)n \(\in\)Z
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
a/CMR \(A=7^{4n}-1⋮5\)với mọi \(n\in N\)
b/CMR \(B=n^4+6n^3+11n^2+6n⋮24\)với mọi \(n\in N\)
1, a, CMR :Với \(\forall\)n \(\in\)N thì A(n) = n(2n + 7) (7n + 7) chia hết cho 6
b, CMR : An = n(n2 + 1) (n2 + 4)\(⋮\)5 Với \(\forall\)n \(\in\)Z
CMR : n( n2+1) .(n2+4) \(⋮5\forall n\in Z\)
a/CMR A=\(7^{4n}-1⋮5\)với mọi n\(\in N\)
b/\(CMR:B=n^4+6n^3+11n^2+6n⋮24\)với mọi \(n\in N\)
c/tìm \(x\in Z\)để \(|x-2011|-2=x-2012\)
Chứng minh rằng: 11nn+2+122n+1 chia hết cho 133.
Giúp mình với, mình đang cần gấp.
CMR với \(\forall\)n \(\in\)Z thì
An = n(n2 + 1) (n2 + 4) \(⋮\)5
CMR: \(n^n+5n^2-11n+5\) chia hết cho \(\left(n-1\right)^2\) với \(n\in N,n>1\).