\(24^{54}.54^{24}.2^{10}=\left(2^3\right)^{54}.3^{54}.2^{24}.\left(3^3\right)^{24}.2^{10}=2^{196}.3^{126}=2^7.2^{189}.\left(3^2\right)^{63}\)
\(=2^7.\left(2^3\right)^{63}.9^{63}=2^7.8^{63}.9^{63}=2^7.72^{63}\) chia hết cho \(72^{63}\)
\(24^{54}.54^{24}.2^{10}=\left(2^3\right)^{54}.3^{54}.2^{24}.\left(3^3\right)^{24}.2^{10}=2^{196}.3^{126}=2^7.2^{189}.\left(3^2\right)^{63}\)
\(=2^7.\left(2^3\right)^{63}.9^{63}=2^7.8^{63}.9^{63}=2^7.72^{63}\) chia hết cho \(72^{63}\)
Chứng minh rằng:
\(24^{54}\cdot54^{24}\cdot2^{10}\)chia hết cho 7263
so sánh \(2^{30}+3^{30}+4^{30}\)và \(3\cdot24^{10}\)
Chứng minh: \(\left(24^{54}\cdot54^{24}\cdot2^{10}\right)\) chia hết cho \(\left(72^{63}\right)\)
CMR 24 mũ 54 nhân 54 mũ 24 nhân 2 mũ 10 chia hết 72 mũ 63
CM:
\(7^6+7^5-7^4\) Chia hết cho 11
\(24^{54}\cdot;54^{24}\cdot2^{10}\) Chia hết cho \(72^{63}\)
CMR:\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
CMR:
a, \(7^6+7^5-7^4⋮11\)
b, \(10^9+10^8+10^7⋮22\)
c, \(81^7-27^9-9^{13}⋮45\)
d, \(24^{54}\cdot54^{24}\cdot2^{10}⋮72^{63}\)
e, \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
CMR
24^54 nhân 54^24 nhân 2^10 chia hêt cho 72^63
Chứng minh rằng: 24^54 . 24^54 . 2^10 chia hết cho 72^63
CMR:
a,76+75-74 chia hết cho 11.
b,2454.5424.210 chia hết cho 7263.