NF

CM:A=\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là số hữu tỉ với a,b,c là số hữu tỉ và khác nhau

ML
8 tháng 7 2015 lúc 22:29

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\) là số hữu tỉ

Bình luận (0)
ML
8 tháng 7 2015 lúc 22:23

\(A=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) thì phải?

Bình luận (0)
VN
28 tháng 8 2016 lúc 9:33

kho qua

Bình luận (0)
KT
28 tháng 8 2016 lúc 9:40

nho k cho minh nha

Bình luận (0)
PK
28 tháng 8 2016 lúc 9:48

thôi khỏi làm

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
ES
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
GH
Xem chi tiết