Violympic toán 8

H24

C/m : Với \(\forall n\in N\) thì n4+6n3+11n2+6n \(⋮24\)

NH
25 tháng 6 2018 lúc 11:44

n4 +6n3 + 11n2 + 6n

= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)

= n (n+2)(n2 + 4n + 3)

=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.

Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24

Bình luận (0)
DD
25 tháng 6 2018 lúc 11:48

Ta có :

\(n^4+6n^3+11n^2+6n\)

\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)

\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)

\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)

\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)

\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .

Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TA
Xem chi tiết
HP
Xem chi tiết
TB
Xem chi tiết
LD
Xem chi tiết
NG
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết