NT

C/m rằng:

(17n + 1).(17n + 2) chia hết cho 3

NS
2 tháng 11 2016 lúc 12:07

17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 

* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 

=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 

------------------------------ 

Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 

17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

Bình luận (0)
TM
2 tháng 11 2016 lúc 12:10

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
N1
Xem chi tiết
GE
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết