\(A=x^4+2x^3-16x^2-2x+15\)
\(=\left(x^4-x^2\right)+\left(2x^3-2x\right)-\left(15x^2-15\right)\)
\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)-15\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+2x-15\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+5\right)\)
Vì x là số tự nhiên lẻ => x = 2k+1 (k thuộc N)
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+5\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+6\right)\)
\(=16k\left(k+1\right)\left(k-1\right)\left(k+3\right)⋮16\) (đpcm)