cho x,y,z>0 và \(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}=4\)
tìm min M: \(M=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
Cho x,y,z thuộc Z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\).
Tìm GTLN của A=\(\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
Cho ba số thực x, y, z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Tìm GTLN của biểu thức \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
Cho x, y, z>0 thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\). Tìm GTLN của:
\(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
cho x,y,z la cac so duong thoa man \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
CMR:\(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
Cho x, y, z > 0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Chứng minh: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho các số thực dương x,y,z thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
CMR: \(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
Cho x>0; y>0; z>0 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\).
Chứng minh rằng \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\).
Cho ba số thực dương x,y,z thõa mãn \(\frac{1}{2x-1}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Tìm giá trị lớn nhất của biểu thức \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)