Giả sử a3 + b3 + c3 = 3abc, ta có :
a3 + b3 + c3 - 3abc = 0
Đưa về hằng đẳng thức mở rộng a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0
Mà a + b + c = 0
=> 0.(a2 + b2 + c2 - ab - bc - ca) = 0 (đúng)
Vậy , với a + b + c = 0 thì
a3 + b3 + c3 = 3abc
Đúng 0
Bình luận (0)