NC

CM: \(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+..........+\frac{2n+1}{n^2.\left(n+1\right)^2}\)<1

CH
5 tháng 5 2017 lúc 16:59

Ta thấy \(\frac{3}{4}=\frac{1}{1^2}-\frac{1}{2^2};\frac{5}{36}=\frac{1}{2^2}-\frac{1}{3^2};...\)

Tổng quát:  \(\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

Đặt \(A=\frac{3}{4}+\frac{5}{36}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(\Rightarrow A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

\(A=1-\frac{1}{\left(n+1\right)^2}\)

Do \(\left(n+1\right)^2>0\Rightarrow A< 1.\)

Bình luận (0)

Các câu hỏi tương tự
HG
Xem chi tiết
NM
Xem chi tiết
QC
Xem chi tiết
IK
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết
PU
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết