TT

CM :  \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+......+\frac{1}{100^2}<\frac{1}{4}\)

HP
4 tháng 2 2016 lúc 10:11

đặt 1/5^2+1/6^2+...+1/100^2=A

ta có: \(A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\left(1\right)\)

\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(do\frac{1}{5}>\frac{1}{6}\right)\left(2\right)\)

từ (1);(2)=>1/6<A<1/4

=>đpcm

Bình luận (0)