Lời giải:
Gọi $d$ là ƯCLN của $-3n+1$ và $3n$
Ta có:
$-3n+1\vdots d$
$3n\vdots d$
$\Rightarrow -3n+1+3n\vdots d$
$1\vdots d$
$\Rightarrow d=1$
Vậy $-3n+1, 3n$ nguyên tố cùng nhau nên phân số $\frac{-3n+1}{3n}$ tối giản.
------------------
Gọi $k$ là ƯCLN của $-n+4$ và $3n-11$
Ta có:
$-n+4\vdots d$
$\Rightarrow -3n+12\vdots d$
$3n-11\vdots d$
$\Rightarrow (-3n+12)+(3n-11)\vdots d$
$1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{-n+4}{3n-11}$ là phân số tối giản (đpcm)
Giải:
\(\dfrac{-3n+1}{3n}\)
Gọi \(ƯCLN\left(-3n+1;3n\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}-3n+1⋮d\\3n⋮d\end{matrix}\right.\)
\(\Rightarrow\left(-3n+1\right)+\left(3n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{-3n+1}{3n}\) là p/s tối giản
\(\dfrac{-n+4}{3n-11}\)
Gọi \(ƯCLN\left(-n+4;3n-11\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}-n+4⋮d\\3n-11⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(-n+4\right)⋮d\\3n-11⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-3n+12⋮d\\3n-11⋮d\end{matrix}\right.\)
\(\Rightarrow\left(-3n+12\right)+\left(3n-11\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{-n+4}{3n-11}\) là p/s tối giản
Chú bạn học tốt!