HN

CM các phân số sau tối giản:
\(\dfrac{-3n+1}{3n}\),\(\dfrac{-n+4}{3n-11}\)

 

AH
30 tháng 6 2021 lúc 10:37

Lời giải:

Gọi $d$ là ƯCLN của $-3n+1$ và $3n$

Ta có:

$-3n+1\vdots d$

$3n\vdots d$

$\Rightarrow -3n+1+3n\vdots d$

$1\vdots d$

$\Rightarrow d=1$

Vậy $-3n+1, 3n$ nguyên tố cùng nhau nên phân số $\frac{-3n+1}{3n}$ tối giản.

------------------

Gọi $k$ là ƯCLN của $-n+4$ và $3n-11$

Ta có:

$-n+4\vdots d$

$\Rightarrow -3n+12\vdots d$

$3n-11\vdots d$

$\Rightarrow (-3n+12)+(3n-11)\vdots d$

$1\vdots d$

$\Rightarrow d=1$

$\Rightarrow \frac{-n+4}{3n-11}$ là phân số tối giản (đpcm)

Bình luận (0)

Giải:

\(\dfrac{-3n+1}{3n}\) 

Gọi \(ƯCLN\left(-3n+1;3n\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-3n+1⋮d\\3n⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+1\right)+\left(3n\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-3n+1}{3n}\) là p/s tối giản

 

\(\dfrac{-n+4}{3n-11}\) 

Gọi \(ƯCLN\left(-n+4;3n-11\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}-n+4⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3.\left(-n+4\right)⋮d\\3n-11⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}-3n+12⋮d\\3n-11⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(-3n+12\right)+\left(3n-11\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{-n+4}{3n-11}\) là p/s tối giản

Chú bạn học tốt!

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
HY
Xem chi tiết
NP
Xem chi tiết
HQ
Xem chi tiết