Ta có: \(\left(a+1\right)^2=\left(a+1\right)\left(a+1\right)=a^2+2a+1\)
Theo bài ra ta có: \(a^2+2a+1\ge4a\)
Ta phải chứng minh: \(a^2+1\ge2a\)
=>\(a^2-a+1\ge a\)
=> \(a.\left(a-1\right)+1>a\)
=> \(a.\left(a-1\right)\ge a-1\)
Với a=0 và a=1 thì ta sẽ đc giá trị tương ứng \(a.\left(a-1\right)=a-1\)
Còn với \(a\ne0;1\)thì a.(a-1) > a-1
Xét hiệu \(\left(a+1\right)^2-4a\)
\(=a^2+2a+1-4a=a^2-2a+1\)
\(=\left(a-1\right)^2\ge0\)( Mình không chắc câu này )