\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)
Vậy .............
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)
Vậy .............
CM: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}⋮6\left(\forall n\in Z\right)\) thep phương pháp QUY NẠP
Bài 1: Tính các biểu thức:
A= \(\left(\frac{3}{4}\right)^{-4}.\left(-\frac{2}{3}\right)^{-3}\)
B= \(\left(4^3\right)^{-2}\). \(a^{2015}\)
C= \(\left[\left(-\frac{1}{3}\right).\frac{2}{5}.\left(-\frac{3}{4}\right)\right]^3\)
Bài 2: CMR: \(\forall\) n\(\in\)Z
\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)⋮10\)
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
CM bằng phương pháp quy nạp toán học nha
nhớ quy nạp
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
CM bằng phương pháp quy nạp :
a) 10n + 72n - 1 chia hết cho 81 với mọi n thuộc N
b) 10n + 18n - 1 chia hết cho 27 với mọi n thuộc N
c) 4.3n2n+2 + 32n - 36 chia hết cho 64 với mọi n
CMR : \(\left(n^3-13n\right)⋮6\forall x\in Z\)
Chứng minh: nếu \(n\in Z\) thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là số chính phương
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên