Đường thẳng d đi qua điểm \(\left(1;2\right)\) và nhận \(\left(2;-3\right)\) là 1 vtcp nên nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình tổng quát:
\(3\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-7=0\)
Đường thẳng d đi qua điểm \(\left(1;2\right)\) và nhận \(\left(2;-3\right)\) là 1 vtcp nên nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình tổng quát:
\(3\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-7=0\)
Tìm phương trình tổng quát của phương trình d đi qua D(-5;3) và vuông góc với đường thẳng \(\Delta\) :\(\left\{{}\begin{matrix}x=1-2t\\y=4+9t\end{matrix}\right.\)
cho 2 điểm A ( -1 ;1 ) B (2 ;2 ) . Viết phương trình tổng quát của đường thẳng d biết
a) d đi qua A,B
b) d đi qua A và song song với đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1-3t\\y=4t\end{matrix}\right.\)
1. Viết pt tổng quát của đt :
d4 đi qua C(2;-3) và vuông góc với vuông góc EF với E (2;-1) ,F(3;-2)
d5 đi qua A(2;-3) và vuông góc với đt \(\Delta\left\{{}\begin{matrix}x=3+2t\\y=-1-t\end{matrix}\right.\)
d6 đi qua B(4;6) và song song với đt \(\Delta\left\{{}\begin{matrix}x=1-t\\y=4-3t\end{matrix}\right.\)
Tìm tọa độ giao điểm của hai đường thẳng sau
△1: \(\left\{{}\begin{matrix}x=-3+4t\\y=2+5t\end{matrix}\right.\) ; △2: \(\left\{{}\begin{matrix}x=1+4t'\\y=7-5t'\end{matrix}\right.\)
Cho đường thẳng d: \(\left\{{}\begin{matrix}x=2+t\\y=1-3t\end{matrix}\right.\) (t∈R) và 2 điểm A(1;2), B(-2;m). Tìm tất cả các giá trị của tham số m để A và B nằm cùng phía đối với đường thẳng d
a) Xác định tất cả các giá trị của a để góc tạo bởi đường thẳng \(\left\{{}\begin{matrix}x=9+at\\y=7-2t\end{matrix}\right.\) và đường thẳng 3x+4y-2=0 bằng 45 độ
b) Đường thẳng \(\Delta\) đi qua giao điểm của hai đường thẳng \(d_1:2x+y-3=0\) và \(d_2:x-2y+1=0\) đồng thời tạo với đường thẳng \(d_3:y-1=0\) một góc 45 độ có pt là
c) Trong mp tọa độ xOy có bao nhiêu đường thẳng đi qua điểm A(2;0) và tọa với trục hoành góc 45 độ
Với vị trí nào của m thì 2 đường thẳng sau đây vuông góc
△1: (2m-1)x+my-10=0; △2: \(\left\{{}\begin{matrix}x=2-3t\\y=1-4mt\end{matrix}\right.\)
Xác định miền nghiệm:
a, \(\left\{{}\begin{matrix}x+y+2>0\\2x-3y-6\le0\\x-2y+3\le0\\\left|y\right|>1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y-2\ge0\\x-3y+3\le0\\-1\le x\le1\end{matrix}\right.\)
Xác định miền nghiệm
a, \(\left\{{}\begin{matrix}x+y-2=0\\x-3y+3< 0\\-1\le x\le1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y+2>0\\2x-3y-6\le0\\x-2y+3\le0\\\left|y\right|>1\end{matrix}\right.\)