Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

ND

chứng tỏ\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\)

NH
5 tháng 3 2017 lúc 13:26

Đặt A=\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}\)\(=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}\right)\)

Có: \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< \frac{1}{5}.6=\frac{6}{5}\)(1)

     \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}< \frac{1}{11}.7=\frac{7}{11}\)(2)

Từ (1) và (2) suy ra: A\(< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}\)

Lại có: \(\frac{101}{55}< \frac{110}{55}=2\)

Suy ra: A<2 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
ML
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
PA
Xem chi tiết
DT
Xem chi tiết