CT

Chứng tỏ rằng\(\frac{12n+1}{30n+2}\)       là phân số tối giản (n thuộc số tự nhiên).

VT
21 tháng 7 2016 lúc 8:47

              Gọi (12n + 1,30n + 2) = d (d \(\in\)N)

            \(\Rightarrow\hept{\begin{cases}12n+1\\30n+2\end{cases}}\)chia hết cho d \(\Rightarrow\hept{\begin{cases}5\left(12+1\right)\\2\left(30n+2\right)\end{cases}}\)chia hết cho d

           \(\Rightarrow\hept{\begin{cases}60n+5\\60n+4\end{cases}}\)   chia hết cho d

           => 60n + 5 - (60n + 4) chia hết cho d

          hay 1 chia hết cho d nên d \(\in\) Ư(1)

         Mà Ư(1) = {-1;1} => d \(\in\) {-1;1}

         Vì d là số tự nhiên nên d = 1

         => (12n + 1,30n + 2) = 1 hay 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau

        Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản (ĐPCM)

       Ủng hộ mk nha !!! ^_^

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
SK
Xem chi tiết
KT
Xem chi tiết
ND
Xem chi tiết
VT
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
SC
Xem chi tiết