KS

Chứng tỏ rằng:B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)<1

PD
16 tháng 5 2016 lúc 20:11

Ta có : \(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}\)

=> \(B<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

                                                                                            \(=1-\frac{1}{8}\)

                                                                                            \(=\frac{7}{8}\)<1

Vậy B < 1

Bình luận (0)
TD
16 tháng 5 2016 lúc 20:25

ta thay 1/22<1/1.2

1/32<1/2.3

................................

1/82<1/7.8

nen B < 1/1.2+1/2.3+1/3.4+.....+1/7.8

nen B < 1/1-1/8

B<1

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
TS
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
PA
Xem chi tiết
NH
Xem chi tiết