Chứng tỏ rằng : \(3< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
Bài 1 :Chứng tỏ rằng :
a) \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b) \(3< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
Chứng tỏ rằng:
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{63}+\frac{1}{64}>4\)
Chứng minh rằng H>2
\(H=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.......+\frac{1}{63}\)
a) Tìm A biết: \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)
b) Chứng tỏ rằng: 1/2+1/3+1/4+...+1/63>2
Bài tập:
Chứng tỏ rằng:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
Giúp mk nhanh nhé! mk cần gấp ai xong đầu mk sẽ cho 3 tk
Chứng minh rằng:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{63}\)
Chứng minh rằng: \(A< 6\)
Chứng minh rằng:
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{100^2}< 2\)
b) \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.........+\frac{1}{63}< 6\)
Chứng tỏ:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)