Vì 2a+3b chia hết cho 17=>9(2a+3b) chia hết cho17 => 18a+27b chia hết cho 17 <=>(17a+17b)+(a+10b) chia hết cho 17 mà 17a+17b chia hết cho 17 => a+10b chia het cho 17
Dễ nhưng dài. Mình ngại đánh máy lắm bạn ơi.
Vì 2a+3b chia hết cho 17=>9(2a+3b) chia hết cho17 => 18a+27b chia hết cho 17 <=>(17a+17b)+(a+10b) chia hết cho 17 mà 17a+17b chia hết cho 17 => a+10b chia het cho 17
Dễ nhưng dài. Mình ngại đánh máy lắm bạn ơi.
1. Chứng minh rằng : 2a+3b chia hết cho17 <=> a+10b chia hết cho 17 ( a;b thuộc Z )
*Mình đang cần gấp , ai làm đầu tiên sẽ Tick nha , nhớ giải cách làm giúp mình
cho a;b thuộc N
a) biết 2a+3b chia hết cho 17. chứng minh 9a+5b chia hết cho 17
b) biết 9a+5b chia hết cho 17. chứng minh 2a+3b chia hết cho 17
cho a,b thuộc N
chứng tỏ
a)nếu 5a+3b chia hết cho 7 thì a+4b chia hết cho 7
b) nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17
Chứng tỏ rằng nếu 2a+3b chia hết cho 17 thì 9a+5b cũng chia hết cho 17. Điều ngược lại có đúng không.
Cho a,b thuộc N: cHỨNG MINH RẰNG NẾU 2a + 3b chia hết cho 17 thì 9a + 57 chia hết cho 17 và ngược lại
cho a và b là các số nguyên ,hãy chứng minh rằng: nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17 và ngược lại
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Với a,b là các số tự nhiên. Chứng tỏ rằng : a, nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
B, nếu a— 5b chia hết 17 thì 10a + b chia hết 17
C, nếu a — b chia hết cho 7 thì 4a + 3b chia hết 7