n=chẵn
=> 2k.(2k+3)
=>2k.2k+2k.3
=>k.k+2k.3.2.2
=>k.k+k.2.2.2.3
=>k.k+k.24
=>k.2+k.12.2 chia hết cho 2 => n.(n+3) là bội của 2
n=lẻ
=>(2k+1).(2k+1+3)
=>(2k+1).(2k+4)
=>(k+1).(2k+4).2
=>(k+1).(2k+4) .2 chia hết cho 2
=>
=>n.(n+3) là bội của 2
n=chẵn
=> 2k.(2k+3)
=>2k.2k+2k.3
=>k.k+2k.3.2.2
=>k.k+k.2.2.2.3
=>k.k+k.24
=>k.2+k.12.2 chia hết cho 2 => n.(n+3) là bội của 2
n=lẻ
=>(2k+1).(2k+1+3)
=>(2k+1).(2k+4)
=>(k+1).(2k+4).2
=>(k+1).(2k+4) .2 chia hết cho 2
=>
=>n.(n+3) là bội của 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+8) (n+3) là bội của 2 .
Chứng tỏ rằng với mọi số tự nhiên n thì n^2 +6 không thể là bội của 4
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6)chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì
n.(n+5)chia hết cho 2
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)(n+12) là số chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 )( n + 12 ) là số chia hết cho 2
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5