Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NT

Chứng tỏ rằng với mọi số tự nhiên n thì A=16n-15n-1 chia hết cho 15

DH
19 tháng 8 2017 lúc 15:25

\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)

Áp dụng hằng đẳng thức phụ :

\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)

ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)

\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)

Do đó \(16^n-1^n⋮15\)

Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
DB
Xem chi tiết
SK
Xem chi tiết
TQ
Xem chi tiết
DH
Xem chi tiết
LL
Xem chi tiết
HP
Xem chi tiết
BM
Xem chi tiết
DH
Xem chi tiết