TK

Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì số 111...12111...1(n chữ số 1) là hợp số

TK
4 tháng 4 2015 lúc 11:08

111...12111...1 = (111...1000...0 + 111...1) chia hết cho 111...1 nên 111...12111...1 là hợp số

Bình luận (0)
ZZ
10 tháng 1 2017 lúc 22:55

Theo bài ra , ta có : 

111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì ( gọi số chữ số 1 là n ) :

111...12111...1 (n chữ số \(\frac{1}{n}\) chữ số 1 ) = 111...1000...0 ( n chữ số \(\frac{1}{n+1}\) chữ số 0 ) + 111...1 ( n chữ số 1 ) 

Vì tổng trên có 2 số hạng trên đều chia hết cho 111...1 ( n chữ số 1 ) nên số 111...12111...1 ( n chữ số\(\frac{1}{n}\)chữ số 1 ) chia hết cho 111...1 ( n chữ số 1 ) và nó lớn hơn 111...1 (n chữ số 1) nên nó là hợp số.   

 Vậy có đpcm 

Chúc bạn học tốt =))

Bình luận (0)
H24
14 tháng 1 2018 lúc 12:27

Theo bài ra , ta có : 
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì ( gọi số chữ số 1 là n ) :
111...12111...1 (n chữ số
n
1  chữ số 1 ) = 111...1000...0 ( n chữ số
n + 1
1 chữ số 0 ) + 111...1 ( n chữ số 1 

tk cho mk nha $_$

Bình luận (0)