HT

Chứng tỏ rằng trên trục số, giữa hai điểm biểu diễn hai số hữu tỉ khác nhau bao giờ cũng có ít nhất một điểm hữu tỉ nữa.

DS
28 tháng 8 2016 lúc 21:43

Ví dụ cho dễ hiểu:

Có 1/3 và 2/3 liền kề nhau.

Nhưng khi nhân cả mẫu và tử lên cùng 1 số:

2/6 và 4/6.

Suy ra ta có 1/2 ở giữa.

Cách chứng minh:

Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)

2a/2b và 2(a+1)/2b

2a/2b và (2a+2)/2b.

=>Ta có (2a+1)/2b ở giữa.

Chúc em học tốt^^

Bình luận (0)
DS
28 tháng 8 2016 lúc 21:42

Ví dụ cho dễ hiểu:

Có 1/3 và 2/3 liền kề nhau.

Nhưng khi nhân cả mẫu và tử lên cùng 1 số:

2/6 và 4/6.

Suy ra ta có 1/2 ở giữa.

Cách chứng minh:

Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)

2a/2b và 2(a+1)/2b

2a/2b và (2a+2)/2b.

=>Ta có (2a+1)/2b ở giữa.

Chúc em học tốt^^

Bình luận (0)
DS
28 tháng 8 2016 lúc 21:43

Ví dụ cho dễ hiểu:

Có 1/3 và 2/3 liền kề nhau.

Nhưng khi nhân cả mẫu và tử lên cùng 1 số:

2/6 và 4/6.

Suy ra ta có 1/2 ở giữa.

Cách chứng minh:

Gọi 2 số hữu tỉ là a/b và (a+1)/b.(cách nhau 1/b)

2a/2b và 2(a+1)/2b

2a/2b và (2a+2)/2b.

=>Ta có (2a+1)/2b ở giữa.

Chúc em học tốt^^

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
PA
Xem chi tiết