Lập dãy số :35;36;37;.....;3106
Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.
Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))
Ta có:(13m-13n)chia hết cho 100
\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100
Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100
\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01
Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01