Gọi ƯCLN(n+1; 2n+3) là d. Ta có:
n+1 chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+3-(2n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n