AB

Chứng tỏ rằng phân số 6n+3/9n+4 tối giản (n thuộc N).

YS
17 tháng 3 2016 lúc 16:32

Giải:

Gọi (6n + 3, 9n + 4) = d

Ta có: 

6n + 3 chia hết cho d

9n + 4 chia hết cho d

=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d

=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d

Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1

=> 1 chia hết cho d => d = 1

Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\)  là phân số tối giản (điều cần chứng minh)

Bình luận (0)
YS
17 tháng 3 2016 lúc 16:31

(Nhắc nhở một tí: Nếu bạn muốn chứng minh các số dạng n mà là phân số thì bạn hãy chứng minh tử số và mẫu số là hai số nguyên tố cùng nhau, "làm xong ủng hộ")

Giải:

Gọi (6n + 3, 9n + 4) = d

Ta có: 

6n + 3 chia hết cho d

9n + 4 chia hết cho d

=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d

=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d

Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1

=> 1 chia hết cho d => d = 1

Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\) là phân số tối giản (điều cần chứng minh)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
TN
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
HN
Xem chi tiết