Giải:
Gọi (6n + 3, 9n + 4) = d
Ta có:
6n + 3 chia hết cho d
9n + 4 chia hết cho d
=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d
=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d
Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1
=> 1 chia hết cho d => d = 1
Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\) là phân số tối giản (điều cần chứng minh)
(Nhắc nhở một tí: Nếu bạn muốn chứng minh các số dạng n mà là phân số thì bạn hãy chứng minh tử số và mẫu số là hai số nguyên tố cùng nhau, "làm xong ủng hộ")
Giải:
Gọi (6n + 3, 9n + 4) = d
Ta có:
6n + 3 chia hết cho d
9n + 4 chia hết cho d
=> 4(6n + 3) chia hết cho d => 24n + 12 chia hết cho d
=> 3(9n + 4) chia hết cho d => 27n + 12 chia hết cho d
Mà 24n và 27n là hai số nguyên tố cùng nhau có ƯCLN = 1
=> 1 chia hết cho d => d = 1
Vì 6n + 3 và 9n + 4 là hai số nguyên tố cùng nhau nên phân số \(\frac{6n+3}{9n+4}\) là phân số tối giản (điều cần chứng minh)