NB

Chứng tỏ rằng nếu p là số nguyên tố và p >3 thì :  ( p - 1 ) . ( p + 1 ) chia hết cho 24

H24
13 tháng 5 2015 lúc 16:10

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24

Bình luận (0)
H24
13 tháng 5 2015 lúc 16:05

 số nguyên tố lớn hơn 3 có dạng p=3k+1 hoặc p=3k+2 xét 2 trường hợp này rồi ra

Bình luận (0)
H24
2 tháng 2 2018 lúc 11:57

vì p là số nguyên tố lớn hơn 3 nên p là số lẻ và khi chia p cho 3 số dư có thể là 1 hoặc 2

trường hợp 1 ; nếu p chia cho 3 dư 1 thì p-1 chia hết  cho 3 do đó (p-1)(p+1) chia hết cho 3  

tường hợp 2 ;nếu p chia hết cho 3 dư 2 thì p+1 chia hết cho 3 do đó (p-1)(p+1) chia hết cho 3 

vì p là số lẻ nên (p-1)(p+1) là hai số chẵn liên tiếp do dó (p-1)(p+10 chia hết cho 8 ( tích của 2 số chẵn liên tiếp chia hết cho 8)mà(p-1)(p+1)chia hết cho 3 và BCNN(3;8) = 24 nên (p-1)(p+1) chia hết cho 24 

Bình luận (0)
LG
14 tháng 4 2018 lúc 20:39

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

Bình luận (0)

Các câu hỏi tương tự
OA
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
PD
Xem chi tiết
PB
Xem chi tiết
VD
Xem chi tiết
DA
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết