Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HK

chứng tỏ rằng: nếu a + b/ c + d = b + c/ d + a (trong đó a + b + c + d khác 0) thì a = c

NB
15 tháng 10 2021 lúc 18:38

vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)  ;    \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

vì \(\frac{a}{c}=\frac{b}{d}\)\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c

Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)  thì a=c

Bình luận (0)
 Khách vãng lai đã xóa
PL
18 tháng 10 2021 lúc 11:16

Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)

\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)

Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VA
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
DP
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết