Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng (n+3)chia hết. cho(n+6)chia hết cho2(với n thuộc tập hợp N)
Chứng tỏ rằng biểu thức sau là hợp số:
2+n2+n (với n thuộc tập hợp N)
B1) Chứng tỏ 2 số 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc tập hợp N*
B2) Cho 5n + 6 và 8n+ 7. Tìm ƯCLN của chúng với mọi n thuộc tập N.
cho a = 1+2+3+....+n và b = 2n +1 ( với n thuộc tập hợp số tự nhiên ,n > hoặc = 2 ). chứng tỏ rằng phân số a phần b tối giản
Chứng tỏ rằng phân số n+1/n+2 là phân số tối giản với n thuộc tập hợp số nguyên,n không bằng -2
Chứng tỏ rằng nếu 17n2+1 chia hết cho 6 với n thuộc N* thì (n,2)=1 và (n,3)=1
Chứng tỏ rằng :
a, (n+3) . (n+6) chia hết cho 2 với mọi n thuộc N
b, n . (n+5) chia hết cho 2 với mọi n thuộc N
Chứng tỏ rằng với số tự nhiên thuộc n thì (n+3) x (n+6)
chứng tỏ rằng: phân số 12n+1 phần 30n+2 là phân số tối giản (n thuộc tập hợp N)