gọi d là ƯC(2n + 1; 4n + 1)
=> 2n + 1 chia hết cho d và 4n + 1 chia hết cho d
=> 4n + 2 chia hết cho d và 4n + 1 chia hết cho d
=> 4n + 2 - 4n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 1 và 4n + 1 là 2 snt cùng cùng nhau
gọi d là ƯC(2n + 1; 4n + 1)
=> 2n + 1 chia hết cho d và 4n + 1 chia hết cho d
=> 4n + 2 chia hết cho d và 4n + 1 chia hết cho d
=> 4n + 2 - 4n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 1 và 4n + 1 là 2 snt cùng cùng nhau
1. Chứng tỏ rằng với n \(\in\)N thìn+1 và 7n+4 là hai số nguyên tố cùng nhau.
2. Tìm n\(\in\)N thì 2n+1 và 4n+1 là hai số nguyên tố cùng nhau.
3. Tìm số nguyên tố p sao cho p+2 và p+4 đều là số nguyên tố.
4. Tìm số tự nhiên n sao cho \(n^2\)+3 là số chính phương.
chứng minh rằng với mọi n thuộc N thì 2n+1 và 4n+3 là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Chứng tỏ rằng hai số 2n + 1 và 3n + 1 ( n \(\in\)N ) là hai số nguyên tố cùng nhau.
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a,3n+4 và 3n+7
b,2n+3 và 4n+8
c,n và n+1
d,2n+5 và 4n+12
e,2n+3 và 3n+5
Giúp mình với ạ,mình đang cần gấp!!!
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì số 3n +1 và số 4n+1 là hai số nguyên tố cùng nhau
Chứng tỏ rằng :
a) Hai so 3n + 4 va n + 1 ( n\(\in\)N ) là hai số nguyên tố cùng nhau.
b) Hai số 2n + 5 và 3n + 7 ( n\(\in\)N ) là số nguyên tố cùng nhau.
chứng tỏ rằng với mọi số tự nhiên n thì 2n+1 và 6n+5 là hai số nguyên tố cùng nhau