PN

chứng tỏ rằng : hai tia phân giác của hai góc đối đỉnh là hai tia đối nhau 

S6
10 tháng 7 2017 lúc 21:29

Dễ thế mà cũng đăng !

Bình luận (0)
TD
10 tháng 7 2017 lúc 21:37

x x' O y y' m n 1 2 3 4 5

GT : cho \(\widehat{xOx'}\)và \(\widehat{yOy'}\)đối đỉnh

Om là tia phân giác của \(\widehat{xOx'}\)

On là tia phân giác của \(\widehat{yOy'}\)

KL : chứng minh : Om và On đối nhau

Vì \(\widehat{xOx'}\)đối đỉnh với \(\widehat{yOy'}\)\(\Rightarrow\widehat{xOx'}=\widehat{yOy'}\)

Mà Om là tia phân giác của \(\widehat{xOx'}\)\(\Rightarrow\widehat{O_1}=\widehat{O_2}\)( 1 )

On là tia phân giác của \(\widehat{yOy'}\)\(\Rightarrow\widehat{O_3}=\widehat{O_4}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{O_1}=\widehat{O_2}=\widehat{O_3}=\widehat{O_4}=\frac{1}{2}\widehat{xOx'}\)

Mà Ox' và Oy' đối nhau

\(\Rightarrow\widehat{x'Oy'}=180^o\)

\(\Rightarrow\widehat{O_2}+\widehat{O_1}+\widehat{O_5}=180^o\)

Mà \(\widehat{O_2}=\widehat{O_3}\)

\(\Rightarrow\widehat{O_3}+\widehat{O_1}+\widehat{O_5}=180^o\)

\(\Rightarrow\widehat{mOn}=180^o\)

\(\Rightarrow\)Om và On đối nhau

Bình luận (0)