HN

chứng tỏ rằng \(\frac{n+2}{2n+3},\left(n\in N\right)\)là phân số tối giản. 

TD
8 tháng 6 2017 lúc 7:15

gọi d là ƯCLN ( n + 2 ; 2n + 3 )

Ta có : n + 2 \(⋮\)\(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )

           2n + 3 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )

= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1

Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1

Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản

Bình luận (0)
HT
8 tháng 6 2017 lúc 7:21

để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)

Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)

do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản

Bình luận (0)
HC
8 tháng 6 2017 lúc 7:24

ta có:giả sử ƯCLN (n+2 ;2n+3)=d

ta có n+2=2(n+2)=2n+4 (1)

        2n+3=2n+3 (2)

Từ (1) và (2) 

ta có :(2n+4)-(2n+3) chia hết cho d

         1 chia hết cho d

          d thuộc ước của 1

       nên n+2 và 2n+3 nguyên tố cùng nhau

Vậy n+2/2n+3 là phân số tối giản

Bình luận (0)
SL
12 tháng 2 2018 lúc 8:45

Gọi d là ƯCLN(n + 2, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+2,2n+3\right)=1\)

\(\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản.

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TN
Xem chi tiết
KS
Xem chi tiết
JN
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết