\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}
Đặt tổng sau là B ta có:
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)
Ta lại có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(\Rightarrow B< 1-\frac{1}{50}\)
\(\Rightarrow B< 1\)