IT

Chứng tỏ rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{^{4^2}}+...+\frac{1}{49^2}+\frac{1}{50^2}

DV
2 tháng 6 2015 lúc 10:55

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}

Bình luận (0)
GC
2 tháng 6 2015 lúc 10:57

\(\frac{1}{2^2}

Bình luận (0)
NH
24 tháng 3 2019 lúc 22:13

Đặt tổng sau là B ta có:

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}+\frac{1}{50^2}\)

Ta lại có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(\Rightarrow B< 1-\frac{1}{50}\)

\(\Rightarrow B< 1\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
RS
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
DM
Xem chi tiết
NK
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết