\(x^4-x^3+1+x^3=0\)
\(x^4+1=0\)
mà \(x^4\ge0\) với mọi x
1 > 0
=> \(x^4+1>0\) với mọi x
=> Đa thức Q(x) vô nghiệm
\(x^4-x^3+1+x^3=0\)
\(x^4+1=0\)
mà \(x^4\ge0\) với mọi x
1 > 0
=> \(x^4+1>0\) với mọi x
=> Đa thức Q(x) vô nghiệm
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
a) Chứng tỏ rằng đa thức f(x) = 1/3 x^4 + 3^2 +1 không có nghiệm
b) Chứng tỏ rằng đa thức P(x) = -x+ x^5 -x^2 +x +1 không có nghiệm
Chứng tỏ rằng x=1/2 là nghiệm của đa thức P(x)=4x^2-4x+1 và chứng tỏ đa thức Q(x) =4x^2+1 không có nghiệm
chứng tỏ rằng đa thức \(H\left(x\right)=x^4+2x^3+2x^2+1\) không có nghiệm
a,chứng tỏ rằng đa thứcf(x)=\(\dfrac{1}{3}\) x\(^4\)+3x\(^2\)+1 không có nghiệm
b,chứng tỏ rằng đa thứcP(x)=-x\(^8\) +x\(^5\)-x\(^2\)+x+1 không có nghiệm
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
Cho đa thức f(x)\(=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\) Chứng tỏ rằng đa thức trên ko có nghiệm
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
Cho hai đa thức P(x)=x^5-2x^3+3x^4-9x^2+11x-6 và Q(x)=3x^4+x^5-2(x^3+4)-10x^2+9x. Đặt H(x)=P(x)-Q(x)
1. Chứng minh rằng H(x) không có nghiệm
2. Chứng tỏ rằng H(x) khác 2008 với mọi x thuộc Z