Ta có : abc chia hết cho 21
=> 100a+10b+c chia hết cho 21
=> 84a+16a+10b + c chia hết cho 21
=> 16a+10b+c chia hết cho 21
=> 64a+40b+4c chia hết cho 21
=> 63a+a+42b-2b+4c chia hết cho 21
=> a-2b+4c chia hết cho 21
HT
Ta có:
abc \(=\) \(100a+10b+c\)
\(=\)\(100a-8b+10b-42b+c+63c+84a+42b-63c\)
\(=\)\(16a-32b+64c+84a+42b-63c\)
\(=\)\(16\left(a-2b+4c\right)+84a+42b-63c\)
Áp dụng tính chất chia hết của tổng, ta có:
\(\hept{\begin{cases}abc⋮21\\84a+42b-63c⋮21\end{cases}\Leftrightarrow\left(a-2b+4c\right)⋮21}\)